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Abstract: 
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The primary objective of this paper is in the discussion of suitable methods for the 
modelling of weather variables and the pricing of their respective derivative contracts. 
This work attempts to bring together much of the current thinking in terms of the pricing of 
weather derivative contracts. In addition to the theoretical overview provided, an empirical 
investigation is undertaken using historical data from the Sydney region. Both 
temperature and rainfall dynamics are investigated with some case studies undertaken to 
highlight the practical applications of these financial contracts. 
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1:  Introduction 
 
1.1 Background 
 
Nearly the entire industrialised world is in some way affected by variations in weather 
patterns, be they seemingly random or predictable. These fluctuations invariably have 
financial impacts on the producers and consumers of the products that are affected, thus 
leading to the desire to minimise as much of this risk as possible. Weather derivative 
contracts are a relatively new innovation in financial engineering that have been receiving 
significant attention in recent years as the industrial world continues to realise the 
magnitude of risk management applications that these contracts posses. Whilst both the 
market and literature has been dominated by temperature-based contracts from their 
beginnings in the 1990’s, recently a more diverse range of weather variables have been 
utilised, such as rainfall, snowfall, wind speed and barometric pressure.  
 
The weather derivatives market was largely born out of the deregulation and privatisation 
of many energy industries amongst developed nations during the late 1980’s and early 
90’s, most notably in the US. These newborn utility companies were now being funded by 
private investors who were more scrupulous in regard to their investments than most 
governments have the ability to be. In particular these new investors required more 
certainty in their revenue stream and hence looked towards derivatives in order to 
facilitate this.  
 
The first genuine transaction of a weather derivative contract occurred in 1996 when 
Entergy-Koch and Enron completed a HDD swap for the winter of 1997 in Milwaukee, WI.  
From these beginnings the market for these contracts has been growing steadily with the 
realisation that nearly all industries can benefit from these risk management tools. The 
US Department of Commerce estimates that 70% of all US companies and as much as 
22% of its total GDP is significantly impacted by the weather conditions. 
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Figure 1.1: Total Notional Value [Source: PwC November 2005 Survey for WRMA] 
 
 

4 



 
                                                  Weather Derivative Pricing and Risk Management Applications 

Today the weather derivatives market size has reached around $US 8.4 billion (PwC1 
2005) in total notional value. Initially weather derivatives were restricted to a mature OTC 
(Over-the-counter) market but in recent times significant attempts have been made to 
standardise the contracts and provide an electronic platform on which the instruments 
can be formally transacted. Trading on the Chicago Mercantile Exchange (CME) began 
on September 22, 1999, and now represents around 55% of the total global annual 
turnover in the weather derivative market (PwC 2005). The CME primarily offers 
temperature-based contracts over the major European and US cities. 
 
The failure of US company Enron has been a much-publicised event in terms of the 
accounting irregularities that were involved in its demise, but, more significant were the 
implications that this event would have on the rapidly expanding but still immature 
weather derivative market. Some authors disagree on the long-term impacts of the failure 
as it is seen that many of the practices at Enron were unethical at best and that the 
collapse of the company was as a result of natural market pressures. Adding to this, the 
many employees of Enron (that aren’t in prison) have now been redistributed amongst 
other smaller organisations and some argue that this newfound diversification has 
actually enhanced the growth of the market, providing a greater level of transparency2. 
Either way, it is evident from Figure 1.1 that the market size remained stagnant for a 
period after the collapse of Enron late in 2001, however, in 2005 the market has shown 
promising signs of returning to the growth rates that were being experienced during the 
late 1990’s. 
 
Enron began its life as a gas and oil pipeline manager and then soon became a trader of 
weather derivatives in order to manage the risk inherent in oil and gas supply contracts. 
Enron was to a large extent the creator of the weather derivatives market where they 
’made-markets’3 on a large number of contracts on the CME. Many of the current 
procedures for the modelling of weather risk can be attributed to the teams who used to 
work at this once leading energy company and the ‘release’ of this expertise to the 
general community has stimulated new research into these risk management tools.  
 
 

1.2 Contract Types 
 
Active markets exist in the trading of options, futures and swaps over a variety of 
underlying weather variables. Often these derivative contracts have special, tailor-made 
features that are introduced in order to properly match the hedging requirements of the 
client. Typically these specific features are designed to limit the payout in some way and 
thus make the product more affordable to the consumer. They include cap’s and option 
barriers such as ‘up-and-in’ barriers that can be applied to the contract in a variety of 
ways. 
 
As has previously been alluded to, the majority of the weather derivatives market is 
based around two weather variables, namely: temperature and rainfall. We will describe 
the typical features of these contracts as well as an indication of their use in managing 
weather related risk. 
 

                                                 
1 PwC compile a market survey each year for the Weather Risk Management Association (WRMA) 
2 For an account of the impact of the Enron failure on weather derivative markets see Nicholls [2002]. 
3 Market ‘makers’ are traders that offer buy and sell quotes simultaneously over a particular security. 

5 



 
                                                  Weather Derivative Pricing and Risk Management Applications 

1.2.1   Temperature 
 
Heating Degree Days (HDD) and Cooling Degree Days (CDD) contracts were 
responsible for over 85% of the weather derivative transactions made throughout 2005. 
The primary purpose of these contracts is to allow organisations to hedge against 
excessively high or low temperature distributions over a pre-specified period of time. 
 
Firstly, we define the average daily temperature as the arithmetic average of the 
maximum and minimum temperatures recorded in a 24hr period. In other words: 
 

2
minmax TT

Ti
+

=                                                       (1.1) 
 

Naturally this average temperature is more reliable to model than either the maximum or 
minimum temperature are by themselves however information is thus lost and this 
measure would not provide a satisfactory hedge for those seeking protection from 
extreme daily temperatures.. A HDD is simply the number of degrees the days average 
temperature was below some reference level, T , generally set at 18˚. Hence the HDD’s 
for the month are given as: 
 

)}(,0max{ i
month

TTHDD −= ∑                                              (1.2) 

 
The specific terminology derives from the fact that ‘heating’ is generally required for 
temperatures that are below the reference level (here set at 18˚) thus requiring the 
expenditure of energy. The converse is also true for CDD’s with the consumer’s general 
requirement for ‘cooling’ energy above the reference temperature. From here an option 
contract can then be set with a payoff and exercise price based on these measures. 
Hence a call option on the monthly HDD index would have a payoff of the form: 
 

tickKHDDVt ⋅−= )}(,0max{                                            (1.3) 
  

Where K is the exercise price of the option and the ‘tick’ provides the conversion from 
degrees to $ (i.e. its units are $ per degree) and generally ranges anywhere from $1,000 
to over $1,000,000 per degree. 
 
A CDD contract is the reverse of the HDD in terms of its payoff. A CDD is just the number 
of degrees a particular days average temperature was above some pre-determined 
reference level. As before the accumulated CDD’s for a month are given as: 
 

))(,0max(∑ −=
month

i TTCDD                                              (1.4) 

 
Other variables over which contracts are common include the monthly or daily average 
temperature (Asian type option) as well as monthly and yearly cumulative temperatures. 
The maximum daily temperature provides a significant hedge to crop farmers against 
severe temperatures that can have a devastating impact on a harvest’s quality and size. 
Take as an example the production of wine who’s yield and quality are highly dependent 
on temperatures during the two months prior to harvesting. If excessively high 
temperatures are encountered it can affect the physical vine growth as well as the quality 
of the grape produced including its flavour and odour. Hence a viticulturist could easily 
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utilise a weather derivative over the maximum daily temperature experienced at a 
weather station that was in reasonably close proximity to the vineyard. This contract 
would compensate the farmer for reductions in yield and quality that result from the 
variations in the temperature. 
 
1.2.2   Rainfall 
 
Rainfall contracts have received significantly less focus, in terms of both the literature and 
the amount of trading activity, when compared to temperature based derivatives. 
Primarily this was due to the fact that the weather derivatives market was largely created 
from the needs of energy and utility companies who’s major exposure was to temperature 
related weather variations. Adding to this, rainfall has proven significantly more difficult to 
model accurately, particularly where geographically small areas are concerned. This is 
primarily due to the discrete nature of rainfall and as we shall see in Section 4, two 
geographically close recording stations can produce widely different precipitation 
readings, something that is not encountered with temperature based statistics.  
 
These difficulties manifest as geographical ‘basis’ risk in rainfall derivative contracts in 
that the situation of the risk must be relatively close to the measuring station for an 
effective hedge to be possible. This makes it increasingly hard to find the two (minimum) 
willing counterparties that all derivative contracts require.  Not only are you required to 
find someone who will benefit and someone who will lose-out if rain falls but you also 
have to create an underlying rainfall index (i.e. weather station) that will protect both 
users. This has proven difficult to achieve in practice. As can be seen in Figure 1.2, the 
value of rainfall-based contracts has been increasing rapidly in recent years primarily due 
to the activities of hydroelectricity providers and consumers with the ongoing privatisation 
of water supply arrangements in many developed economies. 
 
 

1.2.3   Other Variables 
 
Whilst temperature and rainfall contracts account for the majority of the traded 
derivatives, other important weather variables are also becoming realised for their 
hedging opportunities. Interest in these new products is purely demand driven and is 
generally initiated by a client demanding protection from unfavourable weather 
conditions. In fact, any variable that possesses a reliable measurement practice can 
potentially be used as a basis for a derivative contract to provide protection against 
unfavourable financial outcomes. 
 
Wind speed contracts have been one of the major growth points for the weather 
derivatives market, accentuated by a significant global ‘push’ towards wind based power 
generation and other renewable sources of energy. Wind-generating power companies 
are at the mercy of the winds in terms of the amount of electricity that they can produce 
and hence require some type of protection against lower than expected wind speeds. The 
Merrill Lynch - Global Commodities Wind Power Indices (WPIs) are produced as a 
reference by which wind farmers and other producers can hedge their exposure to the 
variability of wind speeds.  
 
The chart that follows shows how the ‘mix’ of transactions in the global weather derivative 
market has been changing in recent times. Note that the large volume changes during 
2005, evident in Figure 1.1, means that although some categories appear to have 
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dropped in overall proportion, in fact all segments have increased their nominal turnover 
in 2005 when compared with the previous year.  
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

Figure 1.2: Breakdown of Weather Derivative Transactions. [Source: PwC November 2005 Survey 
for WRMA] 
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Others variable of interest include Sunlight hours, cloud cover, snow melt, humidity and 
atmospheric pressure. All of these variables can in some way impact upon the earnings 
of producers and hence the cost to consumers. 
 
 
1.3 Weather Derivative Markets 
 
There are two primary markets for exchange traded (standardised) weather derivative 
contracts that cover US, European and some Canadian cities. The two major exchanges 
that offer an automatic and standardised market for the trading of weather derivatives 
are: 
 

CME: The Chicago Mercantile Exchange has the largest weather derivatives 
market in the world. The exchange offers both futures and option contracts over a 
range of US and European cities. In 2005 the CME traded 4.25 billion of notional 
value on its exchange which accounts for almost 56% of the total traded volume 
worldwide. 
 
Liffe: London International Financial Futures and Options Exchange. In July of 
2001, Liffe launched a series of contracts based on indices related to the daily 
average temperatures in London, Paris and Berlin. This organisation has recently 
been working with several technology companies to create an internet based 
trading platform for European weather derivatives.(Risk, March 2000). In 2004 
Liffe suspended its trading of weather derivative contracts due to a lack of 
turnover and significant structural issues. 

 
The acceptance of weather derivatives has been slower in Europe than in the US market. 
One of the main reasons for this is the lack of a standardised weather-recording 
framework that exists across the Atlantic. This is as a result of the many individual 
countries that make up Europe who have vastly different levels of development, which 
has meant that it has historically been very difficult to obtain consistent, reliable data. The 
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recent expansion of the European Union (EU) and the creation of a single European 
currency should greatly facilitate the propagation of unified procedures for data capture 
and analysis. 
 
More recently Asia, and in particular Japan, have become a source of weather derivative 
demand as their energy markets gradually became deregulated. The first official 
transaction in Japan was during 1999 between Mitsui Marine and a local sporting goods 
manufacturer that consisted of an option over the snow depth recorded for the following 
winter season. Natsource Japan, a large energy-based broker, is one of the major 
promoters of weather derivatives in Japan and has created a measure, the Japan 
Weather Derivatives Index (JWDI), around which market participants can design weather 
risk management products. As well as this the company has created an interbank 
electronic exchange, the Japanese Weather Exchange (JWX), on which the large 
financial organisations can transfer weather risk both within Japan as well as to the rest 
of the world. 
 
The first weather derivative contract in Australia occurred in march of 1998 between 
United Energy Marketing and Utilicorp4, a US based energy utility. The contract called for 
a payout if the temperature rose above 35°C in Melbourne or 33°C in Sydney for 5 days 
or more during the summer months. As it turns out Sydney reached this level on 5 days 
and Melbourne on 6 days and hence the contract exercised at roughly 8 times the initial 
one-off premium paid. Currently, in Australia, the formal market is practically non-existent. 
Whilst a partnership was formed in 2001 between Aquilla energy and Macquarie5 Bank to 
provide trading and consulting services in the weather derivatives market, the initiative 
appears to have faded and there are few genuine transactions that have been recorded 
and made public in the past 2 years. 
 
 
1.4 Market Participants 
 
In the early years of the weather derivative market the major transactions were generally 
between large energy companies and large financial institutions. The overall complexities 
of the risk inherent in these products required a significant amount of research in order to 
properly price and was beyond the expertise of most of the participants. The financial 
impact of weather was so great on these energy and utility companies that is was 
economical to spend large amounts of money endeavouring to reduce this uncertainty. 
 
To achieve this they utilised temperature-based derivatives in an attempt to smooth the 
uncertainty in their financial performance that was attributable to temperature variations. 
As an example, consider a company who supplies gas to consumers for heating during 
the winter months. Clearly the company will see reduced profits if temperatures are 
higher than usual during the winter period in question and, conversely, will experience 
higher profits if the region experiences lower than average temperatures. Hence this 
business might seek to reduce the overall variability of its expected profits buy purchasing 
a put option on the HDD index for the particular months in question. 
 

                                                 
4 Energy and Power Risk Management – June, 1998 
5 ‘Aquila To Enter Australian/New Zealand Weather Derivative Market’ – Insurance Journal - August 20, 2001  
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Figure 1.3 shows the relationship between the maximum power load delivered and the 
average temperature for the New England region (source: McIntyre [2001]) . This chart 
clearly reveals the large correlation between these variables and shows graphically the 
hedging opportunities that are available to energy producers and consumers. 
 

     
  Figure 1.3:  Power Load vs Temperature 
  (source: McIntyre [2001]) 

 
 
 
1.4.1   Weather Derivatives and Insurance 
 
There are many similarities that exist between traditional insurance policies and weather 
derivative contracts in terms of their risk management applications. Both have the ability 
to recoup losses incurred by adverse weather conditions across both commercial and 
personal lines of business. Having said this, there are several important differences in 
terms of the coverage offered and the payouts received by the purchaser of these two 
forms of financial protection. Some of the most important points of difference include: 
 

• Identifiable Loss: Insurance contracts are more often designed for protection from 
the extreme weather events such as a storm or flood where an identifiable loss 
has occurred. This loss is required as evidence that a claim can be made against 
the insurer. The payout of a weather derivative on the other hand is determined by 
reference to an index whose composition is transparent, such as temperature and 
rainfall. In this sense the purchaser of the protection does not require proof and 
significant savings can be made on legal fees required to defend appropriate 
payments. 

 
• Moral Risk: The moral risk that is inherent in all insurance contracts can be nearly 

entirely removed as the reference is made to an index that is (hopefully) out of the 
control of both the counterparties. This will again act to reduce the cost of 
covering the associated risk and hence make weather derivatives a more 
affordable option to primary producers. 
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• Basis Risk: There are very little differences between the loss incurred and the final 
payout in an insurance contract. In other words, an insurance contract reduces 
the amount of basis risk present in a financial hedge by tailoring the payout to 
match the client’s overall financial impact. Weather derivatives on the other hand 
are generic by there very nature and the returns from the contract will never 
properly match the exposure faced by the client (unless the client is situated in the 
weather station!). This is the most significant restriction to the expansion of 
weather derivative contracts. 

  
The insurance industry has contributed to much of the growth in recent years. Weather 
derivative contracts have allowed many insurers and reinsurers to offer a wider range of 
products to their clients as well as being able to assist in managing the significant 
weather related risk that a general insurer will often retain. These now include non-
catastrophic weather insurance contracts that can protect crops and their associated 
income streams from what are relatively predictable weather extremes.  
 
Large reinsurers such as Swiss Re (New Markets division) and Hannover Re are 
currently using weather derivatives as part of their broader risk management programs 
and more recently in Asia companies such as Westpac Bank and Element Re have 
entered the market. Whilst these large reinsurers are well suited due to the generally 
large size of weather derivative contracts, theoretically they should be more appealing to 
geographically more concentrated insurers who are less easily able to obtain ‘natural’ 
diversification. Brokers such as Willis, AON and Marsh are actively promoting weather 
derivative products to their clients however these contracts tend to be highly tailored to 
meet the specific needs of the consumer and hence generally require specific pricing 
approaches. 
 
 

1.4.2   Other Users 
 
There are also other, more technical, users of these new derivative contracts that rely on 
their specific return profiles to achieve a better mean-variance outcome for their portfolio. 
In fact, weather derivative assets are beginning to be seen as attractive for a well-
balanced portfolio as they have very small correlations with traditional asset classes such 
as bonds and equities thus creating a unique diversification tool. On top of all of this, 
hedge fund interest during 2004 and 2005 provided a new source of expansion that 
added to the growth that the market has experienced during recent years. These funds 
are typically attracted to inefficient markets, such as the market for weather derivatives, 
where their pseudo-arbitrage strategies can make significant excess returns over well-
diversified portfolios. 
 
More and more financial institutions are promoting these derivative products to their 
clients and, as will be shown throughout this paper, the breadth of risk management 
applications appear to have no bounds. These include: 
 

• Construction companies – hedging against temperature, rainfall, snowfall; 
• Drink manufactures - temperature; 
• Farmers – all weather variables; 
• Event Organisers – mainly precipitation; 
• Tour Operators – all weather variables. 
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1.5 Literature 
 
As has already been alluded to, the study of weather derivatives is fairly recent pursuit 
and the body of literature represents this. General pricing methodologies do not exist and 
the majority of pricing is completed via simulation of historical data, more commonly 
known as ’burning cost’ analysis. 
 
Cambell and Diebold (2002) laid out a framework for the modelling of temperature that  
has since been extended by several authors as well as tested empirically across different 
regions. Alaton[2002] provides a closed form approximation for the pricing of CDD 
options, based around a normal approximation, that can equally be applied to HDD based 
contracts. On the practical front, Garcia et. al. [2001] gives an excellent overview of how 
these contracts can be applied to practical situations, in particular a soft drink 
manufacturer.  
 
Rainfall derivatives have received even less attention than the temperature contracts with 
much of the research being kept ‘in-house’ by the financial institutions that invest heavily 
in their development. Cao et al [2004] provide a comparison of three methods for the 
modelling of rainfall distributions than can be used as the basis for the pricing of 
derivative contracts over these statistics. Moreno[2002] provides an alternative approach 
as well as undertaking an analysis of basis risk in rainfall contracts in London. 
 

 
1.6 Overview 
 
The general aim of this paper is to overview a variety of approaches to the modelling and 
pricing of weather related risks, particularly temperature and rainfall based contracts. 
Throughout the paper the numerical methods outlined are highlighted by an empirical 
study on several weather stations based in Sydney. Data from the Australian Bureau of 
Meteorology (BOM) is used during this paper to provide practical examples of the 
numerical processes that are discussed. 
 
Section 2 gives an outline of the pricing frameworks that are generally used by 
practitioners in the weather derivatives market. An overview of mean reverting dynamics 
and their association with the Uhlenbeck-Ornstein process is given and solutions to these 
stochastic equations are derived. A variation on the Black-Scholes framework proposed 
by Jewson and Zervos [2003] is discussed along with the limitations of the general BS 
approach for the pricing weather derivatives. A short revision of the common numrical 
techniques (‘Burn’ analysis, Monte Carlo simulations) is also provided to refresh their use 
before pricing options via these methods in the following sections. 
 
Temperature-based derivatives, where the majority of the current literature resides, are 
covered in section 3. A variety of methods in the modelling and pricing of temperature 
based derivatives are discussed in detail. As well as this several case studies are 
included to assist in illuminating the usefulness of these derivatives in managing risk. The 
modelling of temperature roughly follows the method used in Benth(2005) and 
Alaton(2002) , however it is applied to the historical data from Sydney, Australia. 
 
Section 4 investigates the modelling and pricing of rainfall derivatives. A similar analysis 
to Moreno (2002) is undertaken on two geographically close weather stations to 
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determine if similar relationships can be found. Again several case studies are provided 
indicating the areas into which these relatively new financial products might find 
themselves. The final section of this paper attempts to summarise the main points 
covered with a view as to how the weather derivatives market might best move forward 
from these relatively primitive foundations. 

13 



 
                                                  Weather Derivative Pricing and Risk Management Applications 

2:  Pricing Principles 
 
 

The theory in terms of weather derivative pricing is still extremely sparse with no widely 
satisfactory formula that can be used by the growing number of practitioners in the 
marketplace. The current pricing methodologies can be broadly put into two groups; 
analytical solutions or numerical solutions. Whilst standard equity options have the 
famous Black-Scholes equation to provide practitioners with a reliable pricing basis, their 
weather-based counterparts have no agreeable equivalent to the BS framework and 
generally require a numerical approach. 
 
A quick revision of standard option pricing theory is helpful when investigating its 
extensions later. Arithmetic Brownian motion is commonly represented by the following 
stochastic differential equation: 

tt dWdtdX .. σμ +=                                                     (2.1) 
 
Whilst this might be suitable for modelling biological processes, Geometric Brownian 
motion (gBm) is the process that is generally used to model financial variables such as 
stock and commodity prices. Its necessity arises out of the fact that a log function does 
not permit negative values, essential when modelling asset prices. gBm is described by 
the following stochastic differential equation: 
 

t
t

t dWdt
X
X

.. σμ +=
∂

                                                     (2.2) 

This can be reduced to arithmetic Brownian Motion via the substitution into the above 
equation of   and the use of Ito’s formula, to give: tt XXFy log)( ==
 

                                             tdWdtdF .)
2
1.( 2 σσμ +−=   

which with an initial condition, , has a solution given by: 0X
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0 ttt WttxXF −+−−+= σσμ                             (2.3) 

 

A solution for the process  is then found by reversing the substitution (exponentiating), 
Hence we arrive at our distribution for the initial gBm process: 

tX
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1[(

0
00
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t eXX −+−−
=

σσμ
                                           (2.4) 

 
From here Black and Scholes use their now famous hedging method to derive a partial 
differential equation (i.e. no longer a stochastic equation) for the dynamics of the option 
price that is based on the Brownian motion of equation (2.2).  The Black-Scholes p.d.e is: 
 

 2

2
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2
1.

y
Vy

y
VryrV

t
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∂
∂

−
∂
∂

−=
∂
∂

σ                                       (2.5) 

Where Vt represents the payoff of the option contract. This differential equation can then 
be solved to obtain the explicit Black-Scholes formula. Alternatively a martingale 
approach can be adopted via equation (2.4), i.e. seeking a solution to the equation: 
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E                                         (2.6) 

 
Where Q represents the risk-neutral martingale measure.  
 
 
2.1 Mean Reversion 
 
The key difference to modelling weather-based variables when compared with a general 
financial variable, such as a stock price, is that most weather components exhibit some 
degree of mean reversion. A mean reverting process is one in which the drift component 
of the stochastic differential equation (equation 2.1) always acts in a direction that 
opposes the current displacement from the mean process, in much the same way as a 
spring acts on a weight. 
 
This concept is utilised frequently in the modelling of interest rates, which like many 
weather variables are at least partially mean reverting in that do not rise or fall without 
bound. The Vasicek(1979) model of forward interest rates is based on this mean 
reverting approach as well as other well known interest rate model such as the Hull-White 
model and the Cox-Ignersoll-Ross model. 
 
The mean reversion component is deterministic and is an extension of the drift term, μ. 
 

)( XX
dt

dX
t

t −−∝                                                      (2.7) 

where X represents the mean process. In this way the drift will always act in a way so as 
to bring the process closer to its mean. A proportionality constant is now required, called 
the mean-reversion parameter, which is a measure of the restoration force acting on the 
process dynamics. It is akin to the spring constant k, for all those who can still recall high 
school physics classes. 
 

       ).( XX
dt

dX
t

t −−= γ                                                     (2.8) 

 
Substituting this into the standard Brownian motion dynamics, equation (2.1), we get: 
 

ttt dWdtXXdX .).( σγ +−=                                               (2.9) 
 
Note that this process will no longer be gBm and that negative values are permitted by 
equation (2.9). The probability that negative values will occur depends on the mean 
process level as well as the strength of the mean reversion. For a strongly reversionary 
process who’s mean is significantly above zero it is highly unlikely that the process would 
ever go negative. The Ornstein-Uhlenbeck process is the name given to this modified 
Brownian motion. It has since been shown in Dornier and Queruel [2002] that the process 
given in equation (2.8) does not actually revert to its mean when temperature is used as 
the variable. This is due to the fact that the mean process that the equation is reverting 
to, X , is not constant. To overcome this an extra term (the time derivative of the mean 
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process) is required to be added to the drift component of the stochastic equation above. 
Hence we get: 
 

t
t

t dWdt
dt
Xd

XXdX .)( σγ +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−=                                        (2.10) 

This representation is now mean reverting in the long-run, in other words: XX t =]E[ . 
Another advantage of including this term is that equation (2.10) can now be solved by the 
traditional integrating factor method. Multiplying through by eγs we obtain: 
 

s
s

s
ss

s
s dWeXdedtXXedXe ..)( σγ γγγγ =+−−                                (2.11) 

 
Now the left hand side of the above expression is just the differential of a product, i.e: 
 

)].([.)( ss
s

s
ss

s
s XXedXdedtXXedXe −=+−− γγγγ γ                          (2.12) 

 

∫=−
t

s
s

ss
s dWeXXed

0

.)].([ γγ σ                                            (2.13) 

Note that this would not have been possible without the extra term being added to 
equation (2.10) to make it properly mean reverting. After rearranging this expression we 
obtain the solution to the stochastic process: 

∫ Δ−Δ− +−+=
t

s

tt
ott dWeeXXXX ττ

γγ σ.).( 0                                 (2.14) 

This equation will then become the basis of the Monte Carlo simulations that are 
undertaken in section 3. 
 
 
2.2 Black-Scholes formulation 
 
The seminal paper of Black and Scholes [1977] provided an analytical framework for the 
pricing of contingent claims and in particular options, however the Black Scholes (BS) 
formula relies on some fairly stringent assumptions. Most importantly it is assumed that 
the underlying process is driven by gBm as given above by equation (2.1). Most empirical 
studies show that in fact asset returns are strongly leptokurtic (More concentrated in the 
middle and ‘fat-tailed’), such as Fama (1965). 
 
As well as this, with respect to weather derivatives, there is generally no underlying 
process that is actively traded (i.e. people don’t trade degrees ….yet) and as such the BS 
framework has no method of hedging the derivative in order to derive an analytical 
solution. For these reasons a standard BS approach is not applicable and other more 
indirect methods must be pursued. 
 
 

2.2.1   Asian Options 
 
Many common weather derivative contracts have as their underlying index, an average of 
some statistic over a period of time. For example, many temperature-based derivatives 
will have a payoff that is determined by reference to the average temperature over a 
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week or a month. These types of options are generally referred to as ‘Asian’ options and 
are common in both fixed-interest and equity derivative markets. The averaging can be 
done on a variety of time frames however it is generally the daily temperature that is 
averaged. For example a call option on the monthly average temperature would have
payoff of the form: 
 

 a 

tickK
n

T
V

n

i i
t ⋅−=

∑ = )}(,0max{ 1                                         (2.15) 

where there are n days in the month. Analogies to the BS partial differential equation can 

.2.2   Alternative Black Scholes 

everal authors have decided to proceed with the BS framework ignore the problems of 
 

ing of the 

he theory is based on the Black (76) model where a futures contract is used as the 

and-

              

By using Ito’s formula when substitu lationship into the standard gBm form 

 

be derived for the varieties of ‘Asian’ options that exist6 however, as outlined above, we 
still have no underlying asset with which to perform the required hedge. These types of 
contracts are particularly appropriate for rainfall-based derivatives whose discreetness 
can be smoothed by averaging over a larger period. 
 
 
2
 
S
the underlying assumptions or have attempted to alter the BS approach to accommodate
these deficiencies. The most serious assumption that must be relaxed is that there is no 
underlying asset to base the derivative price around. Jewson et. al [2003] has suggested 
that an alternative BS formula can be derived akin to the derivation of an option on a 
futures contract. To overcome the fact that there does not exist an underlying, traded 
asset, Jewson creates a hypothetical forward weather index that is used as the 
underlying asset which the BS framework can use as a hedge to enable the pric
contingent claim. 
 
T
hedge when deriving the partial differential equation that governs its motion. To 
illuminate, let us assume that the futures price process is governed by the ‘cash-
carry’ relationship: 
 

)(. tTr
tt eXY −=

 

ting this re
equation (2.1) we get the altered stochastic differential equation: 
 

])[( dWdtrydY tt σμ +−=                                             (2.16) 
 

ollowing the same hedging procedure as used in deriving the Black Scholes partial 
 on 

F
differential equation we arrive at the following relationship for the dynamics of options
a futures contract: 
 

2

2
22

2
1

dy
VdyrV

dt
dVt σ−=                                             (2.17) 

 

                                                 
6 These include fixed strike and floating strike amongst others. See Buchen [2002] for derivations. 
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If we compare this relation with equation (2.5) we can see that the term, 
y
Vry
∂
∂

− . is 

removed from the right hand side of the equation. This is the same equation one would 
get if calculating the price of an option on a dividend paying stock where the dividend 
yield was equal to the risk free rate. Hence by using notation similar to Buchen [2002] we 
can write the option price over a futures contract as: 
 

),0,,(.
),,,(),(

σ

σ
τ

τ

tyBSe
rtyeBStyV

r

r

−

−

=

=
                                             (2.18) 

 

where ),,,( σrtxBS  represents the ‘standard’ Black Scholes pricing formula. This formula 
can then be used, after appropriate modelling of the futures price process, to calculate 
the premium applicable to a range of weather based option contracts. 
 
2.3 ’Burn’ Analysis 
 
This is a typical actuarial approach adopted to price a contingency where no assumptions 
are required to be made as to the nature of the process on which the contingency relies. 
A typical ‘burn’ analysis seeks to answer the question: ”What would be the return from the 
contract had I purchased it each year for the last x years?” Generally, an arithmetic 
average is then taken of the results. 
 
For example, to price a February HDD call with exercise of 100, simply find what the 
financial return would have been for each of the February months in the historical data 
set, with the appropriate indexing of the exercise value in order to standardise the 
temperatures over time7. This approach will be used in the pricing of both temperature 
and rainfall based derivatives in sections 3 and 4 over a range of exercise levels.  
 
 
2.4 Monte Carlo Simulations 
 
Monte Carlo simulations differ from the ‘burn’ analysis approach above in that they 
require assumptions to be made as to the dynamics of the underlying variable. 
Essentially they involve running a series of simulations based on a statistically derived 
model and then calculating what the expected return is from all of these simulations. 
 
Mathematically speaking we find a solution to: 
 

)),((.1)]([
1

i

N

i
t tXf

N
Xf ψ∑

=

=E                                          (2.19) 
 

i.e. the arithmetic average of the simulation outcomes. Here t represents time and iψ is 
the series of calculation points. 
 
The concept of mean reversion discussed earlier has important consequences for the 
selection of an appropriate starting point for the simulation process. If the time period of 

                                                 
7 If using data sets over 100 years then a quadratic parameterisation of the long-term trend will be required to properly 
estimate the effective strikes. See section 3.3.1 for more discussion.  
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interest is in the short-term then it is necessary to begin the simulations from the present 
day values as any current deviation from the mean will have an impact on the process in 
the short-term. Consider for example a one-day option over the average daily 
temperature that was being valued at both 1 day and 1 month before the contract period. 
For the valuation close to the contract period it is important to take into account the 
current displacement from the mean as this value will have an impact on the temperature 
on the following days. Hence the simulation should be started on the actual raw value. If 
however we are 1 month from the contract period then we can begin the simulation on 
the mean temperature process as the actual displacement from the mean will not have an 
appreciable influence on the temperatures in a month’s time. An example of pricing via a 
Monte Carlo simulation is shown in section 3 when the valuing of temperature based 
derivatives are investigated. 
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3:  Modelling Temperature 
 
Compared with rainfall, the analysis of temperature has received significant attention from 
the literature in recent years. Primarily this is due to the fact that the majority of traded 
contracts in the weather derivatives market are temperature based, generally related to 
energy supply or demand. More recently the search for a reliable statistical model for 
temperature dynamics has been intensified by the need to provide sound evidence for the 
impacts of human interaction on the planet. The temperature model that is developed in 
the next sections follows a combination of approaches used by Benth et al [2002] and 
Alaton [2002] and has been applied to a range of weather station recordings. 
 
 

3.1 Data  
 
In order to highlight much of the discussion made herein, reference will be made to an 
analysis undertaken using temperature data from the Sydney region for the period 1856-
2005. The data was obtained from the Australian Bureau of Meteorology (BOM). The 
following subsections of the data were used in this investigation: 
 

• Sydney Airport                         Jan 1940 – Dec 2005  
• Observatory Hill, Sydney         Jan 1940 - Dec 2005 
• Prospect Dam                          Jan 1965 - Dec 2005 

 
The majority of the analysis in this paper is in respect of the Sydney Airport weather 
station which consists of 66 complete years of minimum and maximum temperature as 
well as precipitation readings. Please refer to the appendix for a discussion of the 
treatment of missing values in these data sets. 
 
 

3.2 Temperature Distributions 
 
The following histogram shows the distribution of temperatures at Sydney Airport for the 
period Jan 1940 through to Dec. 2005 
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Figure 3.1:  Temperature Histogram – Sydney Airport 
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As figure 3.1 shows, the distribution is bimodal, reflecting peaks for both the summer and 
winter months. This feature is common amongst most temperature distributions 
throughout the world and Appendix B shows a range of these. It is interesting to note that 
southern hemisphere locations tend to have a negatively skewed distribution where as 
northern hemisphere locations are usually positively skewed. If one were to restrict 
attention to just summer months or just winter months then the following patterns are 
revealed: 
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Figure 3.2:  Temperature Histogram – Sydney Airport  
 
The initial part of the modelling process is centred on removing both the long-term and 
seasonal trends from the data (the deterministic part) and from there a stochastic model 
is fitted to the residuals. The first part of this process is referred to as ’detrending’ and 
several authors have proposed methods for achieving this, for example Benth [2005] and 
Alaton [2002]. 
 
 
3.3 De-trending 
 
De-trending is the term used to describe the removal of a deterministic approximation to 
several of the more predictable patterns in the weather. Specifically it refers to the 
removal of seasonal patterns as well as linear (or quadratic) terms that represent long 
term heating or cooling of the earths atmosphere as well as the added impacts caused by 
human interaction. 
 
The decision to de-trend the data can be time consuming and costly so there have been 
attempts made to quantify the necessity to carry out the procedure. Jewson [2004] 
provides a decision rule for the introduction of linear trend but finds that it does not 
significantly beat a rule to always de-trend or to always not de-trend. He found that it beat 
a no trend rule when the time series was relatively long and conversely beat a linear 
trend when the sample was short. 
 

  
3.3.1   Long-term Trends 
 
Analysis of most long-term temperature data reveals a slight positive trend that 
represents the gradual warming of the globe that has been occurring since the last ice 
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age. Study of longer time periods shows that the trend is more significant in latter years 
and suggests that a quadratic term should be used to model these long-term 
environmental changes.  

2.. tctbaTLinear ++=  
 
However, for shorter time periods (<80 years) it is reasonable to assume a linear form. 
 

tbaTLinear .+=                                                     (3.1) 
 
This is generally acceptable given that the majority of the weather derivative contracts 
that are entered into have periods of a year or less. This means that to make projections 
over time periods where the quadratic term becomes significant are rare in practice and 
for the purposes of this investigation a linear trend will be assumed. 
 
 
3.3.2   Seasonal Variation 

 
Seasonal variation is by far the most dominant term in the overall temperature variation. 
The periodic nature of temperature that results from the seasonal variation can generally 
be described by a sinusoidal function and for the purposes of this analysis we will 
assume it to be represented via a truncated Fourier series of the form: 
 

∑∑ ++++=
i

i
i

iSeasonal tCostSinT )()(.0 θλβφγαεα                   (3.2) 

 
Here the coefficient α0 is not required as this effect would be captured in the linear trend 
already discussed. The remaining parameters are to be estimated from the data. 
Combining these two effects, equations (3.1) and (3.2), we now have an equation for the 
mean temperature process given by: 
 

seasonallinear TTT +=  
hence, 

∑∑ +++++=
i

i
i

i tCostSintbaT )()(.. θλβφγα                       (3.3) 

 

For the purposes of this investigation a first order Fourier series will be used so that only 
one α and one β need to be estimated from the data. This will entail a total of 6 
parameters to be estimated in equation (3.3) above. 
 
 
3.3.3   Parameter Estimation 
 
A Least-squares estimation algorithm is used to determine the values of the parameters 
given in equation (3.3). In relation to the ‘speeds’ of the seasonal processes (γ and λ), 
there are two possible approaches to determining suitable parameter values. Most 

authors choose to constrain the two values to 
365
2π

so that a Doppler effect is not 

encountered for projections over longer time periods. Alternatively the ‘speeds’ could be 
allowed to vary, independently of each other, so that a better fit to the raw data is 
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achieved. When the two methods were undertaken on the Sydney Airport data series the 
following deviances were obtained: 
 

    Fixed γ and λ:   147,614 
Variable γ and λ:   143,255 

 
Whilst this shows that the removal of the constraint improves the model fit (as would be 
expected) the magnitude of the improvement does not warrant the loss of tractability that 
the model suffers as can be seen in the following graph that shows the resultant 
parameter values when the wave speeds are allowed to vary.  
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Figure 3.3: Over fitting of raw data when wave speeds 
allowed to vary. 

 
 
The clear ‘kink’ in the graph at around the new year is hard to justify in terms of common 
experience. For this reason we will constrain the individual wave speeds to the value 

365
2π

 so that we have the superposition of waves with equal frequencies. The following 

table summarises the results of the parameter estimation process for the three weather 
stations involved: 
 

 Syd. Airport Observatory Prospect 
a  16.925 17.434 17.26 
b 6.30*10-5 5.16*10-5 4.91*10-5

α 5.14 4.91 5.194 
β 0.69 -0.20 0.986 
φ 1.097 1.25 1.100 
θ 0.97 1.10 0.675 

 

                                 Table 3.1: Parameter estimation results. 
 
In order to estimate the mean-reversion parameter a measure of the autocorrelation must 
be established. To achieve this, today’s temperature is regressed against yesterday’s 
temperature (i.e. an AR(1) model) and then the following relationship yields the 
parameter: 
 

κγ −= e                                                               (3.4) 
 

where κ is the regression parameter. This was undertaken for each of the weather 
stations yielding the following parameters: 

23 



 
                                                  Weather Derivative Pricing and Risk Management Applications 

 
 Syd. Airport Observatory Prospect 
γ 0.555 0.570 0.561 

 
Now that all of the parameter values have been estimated it is then possible to simulate 
typical paths that represent the dynamics of average temperature throughout the year. 
The following graph shows the actual and modelled temperatures for the last 10 years.  
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Figure 3.3:  Modelled Seasonal Temperature – Sydney Airport 
 
 
The increased volatility of temperatures in the summer months is evident from the graph 
but what is less obvious is how volatility varies throughout the rest of the year. 
 
 
3.4 Patterns of Volatility 
 
Most pricing models for weather derivative contracts are derived on the basis of a 
constant volatility over the term of the contingency. On a closer inspection of figure ……  
it is evident that the volatility is not uniform over the year and there are in fact distinct 
seasonal patterns of volatility. Note the following pattern for the seasonal variation of the 
volatility of temperature at Sydney Airport: 
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Figure 3.4:  Seasonal Volatility Pattern – Sydney Airport 
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A degree-4 polynomial has been fitted to the data and is shown in figure 3.4 above. Other 
authors suggest modelling volatility as a Fourier serries (Benth [2005]), as a separate 
Ornstein-Uhlenbeck process (Bhowan[2003]) or as a piecewise construction of constant 
monthly volatilities (Alaton [2002]). 
 
Once all of the aforementioned factors are removed from the raw data we are left with the 
final residuals which if the model assumptions are correct should approximate a normal 
distribution. The following chart shows the distribution of the residuals: 
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Figure 3.5:  Residual Distribution (Zi) 
 
As can be seen from figure 3.4, the residuals are a good approximation to a normal 
distribution at a high level although they appear to be leptokurtic and slightly right-
skewed.  
 
 

3.5 Stochastic representation 
 
Recall from equation (2.8) that the stochastic differential equation that we are using to 
model temperatures is: 
 

                                ttt dWdt
dt
TdTTdT .)( σγ +⎥
⎦

⎤
⎢
⎣

⎡
+−=                                        (3.5) 

This has a solution for an initial conditions of, 00 & TT , that is given by: 
 

∫ Δ−Δ− +−+=
t

s

tt
ott dWeeTTTT ττ

γγ σ.).( 0                               (3.6) 

 
In order to undertake a simulation of the stochastic equation (3.3) we need to obtain a 
discrete approximation to the dynamics so that daily readings can be predicted. A Euler 
approximation to equation (3.5) is: 
 

Z.).(1 σγ ++−=−+ dt
TdTTTT t

ytt                                    (3.7) 

Where . )N(Z 1,0~
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This equation can be used to simulate sample trajectories of the stochastic process and 
will enable the undertaking of Monte Carlo type analysis. 
 
 
3.6 Pricing Option Contracts 
 
Section 2 outlined the common approaches that are currently employed in the pricing of 
weather derivative contracts. Later in this section a numerical comparison of these 
methods will be undertaken with reference to the weather stations outlined in section 
(3.1). Firstly, we will look at an approximation that can be used to price both HDD and 
CDD option contracts. 
 
3.6.1   Normal Approximation 
 
Alaton [2002] proposes an approach for deriving a closed form approximation to the price 
of an option over CDD or HDD contracts. The catch is that generally the CDD price will 
only work in summer months and the HDD in winter months, however, these periods 
would generally represent the exposure periods for the majority of the traded weather 
contracts. 
 
The basics behind the approach are to assume that the max() function has no effect on 
the resulting distribution of HDD’s or CDD’s. If for example the 18 degree limit was used 
as the basis of a CDD contract in Sydney during January it would be a rare day that has 
an average temperature below this value. For the record, out of the 2045 January days 
since 1940 only 11 have recorded an average temperature below 18 degrees (in today’s 
terms), hence this may not be as restrictive an assumption as it may first appear. 
 
Now consider the measurement of CDD’s as given earlier by equation (1.3) but with the 
reference level set at 18˚C, i.e.: 
 

)}18(,0max{∑ °−=
n

in TCDD                                     (3.8) 

If we make the assumption that the average daily teperature will always be greater than 
or equal to the reference temperature (18˚C) then we can rewrite this relation as: 
 

nTCDD
n

in ∑ −= 18                                            (3.9) 

Now we have removed the complication of the max() function and we are free to extend 
the assumption of normally distributed CDD’s. The relationship in equation (3.9) above is 
a linear combination of a Gaussian process which itself will be Gaussian and a normal 
approximation can therefore be legitimised for relatively large values of n. 
 
We can then calculate the moments of this via: 
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and 

][2| ,∑ ∑∑+= jit TTCovTFCDD ]V[]V[  

The value of a call option over this CDD distribution can be given as: 
 

]|)0,[max()( )(
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ttr FKCDDetc n −= −− E                                 (3.10) 
 
where K is the strike price of the call option and tn>t. Proceeding under the assumption of 
normality, Alaton shows that: 
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which on evaluation of the integral gives: 
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Similarly for a put option over the CDD index we can write: 
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which as before yields: 
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where  represents the cumulative (standard) normal distribution and r is the risk-free 
investment rate. This is a powerful approximate method for the pricing of weather based 
option contracts particularly in geographic areas where the effect of the max() function is 
minimal. 

Φ

 

 
3.6.2   An Example 
 
To highlight much of the discussion so far we will price a CDD option for the month of 
January in Sydney. The CDD option is chosen as it would be popular to power generating 
organisations seeking to smooth their returns due to the variability of electricity demand 
during summer months. We will use 3 methods to calculate the option price: Normal 
approximation, ‘Burn’ analysis and Mote Carlo simulations. 
 
The specifics of the options to be priced are: 
 
 

   Period:  January 
Measure: Cumulative CDD 

Exercise Prices:  170 / 180 / 190 / 200 CDD’s 
      Tick::  $100,000 /CDD 
Location:  Sydney Airport (Kingsford Smith) 
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The pricing is undertaken for the three weather stations investigated throughout this 
section. 
 
Burn Analysis 
 
A burn analysis is undertaken using 66 years of data from the Sydney Airport weather 
station. To begin with, it is necessary to calculate the present value of the temperatures 
by adding to the raw temperatures the linear and quadratic trends that were calculated in 
section 3.2.1. As the linear trends will not affect the arithmetic average it is only 
necessary to inflate the daily average temperature rather than the raw maximum and 
minimum values. These present value temperatures are then used to calculate the 
expected payoff for this contract had it been purchased every January for the past 66 
years. 
 
 
Monte Carlo Simulation 
 
The following chart shows a typical sample simulation for the month of January at Sydney 
Airport that is used to determine the expected payoff from the CDD option. The simulation 
was achieved via the use of equation (3.7) along with a random number generator. 
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 Figure 3.6:  Simulated Sample ‘Path. 
 
 
 
Results 
 
The tables that follow show the results obtained for the Sydney Airport weather station: 

  Table 3.2:  Sample Option Prices 

Sydney Airport
January

Method 170 180 190 200

'Burn' Analysis $473,306 $268,763 $137,865 $59,582

Monte Carlo Simulation $489,044 $230,479 $90,848 $13,990

Normal Approximation $463,670 $288,627 $167,993 $91,012

Exercise (CDD)
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Figure 3.7:  Comparison of option pricing methodologies 
 
 
 
 
3.7 Risk Management Applications 
 
 
Beverage Manufacturers 
 
In May of 2000 Corney and Barrow, an operator of a chain of London wine bars, entered 
in to a weather derivative contract in order to hedge against variability in its summer 
sales. The company had found that sales were significantly reduced when lower than 
normal average temperatures were experienced and sought to reduce the dependency of  
their financial returns on the weather. The contract called for the payment of £1500 for 
every degree the average daily temperature was below 24 capped at a maximum of 
£15,000 per day and £100,000 for the entire summer. The derivative only applied to 
Thursdays and Fridays, which represented the majority of business for the inner city wine 
bars and hence provided an effective hedge. 
 
An illustrative case study was undertaken by Garcia et. al. [2001] that highlights the 
effects that temperature can have on juice and milk sales in Switerland, UK, Germany 
and France. Whilst little relationship was found in the milk sales, the juice showed a high 
positive correlation with the average daily temperature. The authors investigate the 
strength of the relationship across the various countries as well as seeking an ideal level 
for a cap, that is, a level of tempreture above which further increases have little impact on 
sales (or possibly even a negative impact). 
 
Construction Industry 
 
There are a variety of ways in which the prevailing temperature can have an adverse 
impact on general construction activities and this has lead to an increasing interest in 
weather derivatives by industry participants. 
 

29 



 
                                                  Weather Derivative Pricing and Risk Management Applications 

Whilst abnormally hot temperatures can cause significant delays it is generally cold 
temperatures that result in the most significant cost impacts. Some of the weather 
hazards that most building and construction companies are exposed to include: 
 

• Concrete: Frost causes water that exists in all concrete structures to freeze which 
in turn can lead to the member cracking under the pressure of the expanding 
water. Also concrete requires particular temperatures during the setting process if 
it is to obtain its ‘ideal’ strength and prevalently low temperatures can cause the 
delay of the construction. 

 
• Stop Work: Workers that are not in air conditioned areas have maximum and 

minimum temperature that they are allowed to work at. Also at temperatures near 
the extremes workers become less efficient i.e. less work get completed in hot 
temperatures. 

 
• Snow: Snowfall that is unexpected in either its occurrence or its magnitude can 

cause extensive delays to a construction site as well as the added chance of 
collapse of any temporary structures that are required during construction.  

 
 
 
  
 

30 



 
                                                  Weather Derivative Pricing and Risk Management Applications 

4:  Rainfall Derivatives 
 
The market for rainfall derivatives has been slow to gain momentum after first having 
been neglected in favour of the more popular temperature-based derivatives. The body of 
literature remains narrow and there is presently a lack of a unified pricing approach to 
give the newborn market participants confidence. As can be seen in figure 1.2 the market 
for rainfall contracts is now approximately 10% of the total market size and represented 
around $US 840 million of notional value in 2005. 
 
Whilst the demand for rainfall protection is high there are several technical difficulties that 
are restraining the further growth of these contracts. ‘Basis risk’ (discussed in the 
following section) and a lack of reliable statistical models have meant that most banks 
and other large financial institutions are reluctant to quote prices over these complex and 
highly uncertain derivative products. Despite this there have been several recent 
examples of businesses utilising the risk management power of these contracts.  
 
During 2002 a German golf course operator entered into a rainfall based contract with the 
large French bank, Société Generale. In recent years the operator had seen significantly 
lower earnings due to a much higher than average rainfall and wished to hedge their 
exposure to the weather through a derivative contract. The contract called for the 
payment of a fixed sum for every day over 50 that received more than 1mm of rain during 
the months of May through September.  
 
4.1 Data 
 
Data was analysed from the same weather stations as used in section 3 for the 
temperature analysis. Most weather stations in the data series supplied by the Australian 
BOM have recorded precipitation values significantly earlier than temperature recordings 
and as such we have recordings as early as 1858 for the Observatory Hill weather station 
and 1887 for Prospect Dam. The data sets used in the analysis were: 
 

• Sydney Airport                         Jan 1929 - Dec 2005  
• Observatory Hill, Sydney         Jan 1858 - Dec 2005 
• Prospect Dam                          Jan 1887 - Dec 2005 

 
A similar analysis is performed on the Sydney data to that undertaken by Moreno [2002] 
for rainfall dynamics in London, UK where the local discrepancies between two 
geographically close8 weather stations in that city were analysed with a view towards 
pricing rainfall derivatives. The proposed methodology of Cao et al [2004] is empirically 
evaluated with reference to weather statistics. 
 
As before, Appendix A contains a discussion on the treatment of missing values in the 
data series used in this investigation. In general the measuring of precipitation values 
over the historical data set tends to be more reliable that the temperature based 
measurements with few significant gaps in the series. 
 

 

                                                 
8 The two stations were Heathrow Airport and St James Park, a distance of 32 km apart. 
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4.2 Local Correlation 
 
Temperatures diffuse quickly to produce homogenous areas with nearly uniform levels of 
the desired statistic. Rainfall, on the other hand, is discrete by its very nature and this 
provides difficulties when attempting to produce reliable models of its variability. This 
local variability manifests itself as ‘basis’ risk when considering the use of derivatives to 
hedge rainfall exposure and is one of the primary reasons that these types of weather 
derivatives have been slow to take up compared with temperature derivatives. Often the 
derivative contracts are based on the average of several nearby weather stations in order 
to reduce much of the spatial basis risk that is inherent in precipitation derivatives.  
 
Unlike temperature statistics, rainfall shows a much higher degree of local variation 
(volatility) due to the discrete nature of rainfall. Hence two weather stations in close 
proximity to each other often record vastly different rainfall measures on the same day. 
This provides a considerable issue in terms of their suitability for hedging rainfall 
exposures as it is highly dependant on the location of the measuring station. 
 
To highlight this occurrence I will briefly analyse the correlation between two sites in 
Sydney, Sydney Airport and Observatory Hill, which are a distance of 11.2 km (7 miles) 
apart. We will also make a comparison with Prospect Dam weather station which is a 
distance of around 34km west from Observatory Hill. 
 
 

4.2.1   Variation 
 
On average the Observatory Hill station received 140.7mm more rain per year than 
Sydney Airport (1229.9mm and 1089.2mm) and only 1 in every 4 years does Sydney 
Airport record a higher cumulative rainfall for the year. The graph that follows depicts the 
correlation of the yearly cumulative rainfall from the two weather stations. 
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Figure 4.1: Annual Rainfall Correlation – Syd. Airport vs  
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The monthly rainfall correlations are more important than the yearly relationships as 
derivative contracts of the latter are rare. Figure 4.2 that follows shows these monthly 
correlations for the two weather stations.  
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 Figure 4.2: Monthly Rainfall Correlation – Syd. Airport vs  
 Observatory 

 
These correlations are in a relatively tight band with all monthly correlations being greater 
than 0.92. which shows that the basis risk involved with precipitation derivatives in 
Sydney is not as pronounced as that found by Moreno [2002] for London based weather 
stations. The daily correlation between the two sites is much weaker that the yearly 
correlations and often differences of 100% are encountered. A correlation of 0.89 was 
calculated for the daily average rainfall between the two sites 
 
 
4.3 Modelling Rainfall 
 
As has previously been alluded to, the statistical modelling of rainfall provides challenges 
that are not inherent in the modelling of temperature. Most of this difficulty arises from the 
discreetness of rain when compared with temperature distribution which requires different 
measures in order to properly model them. Wilks[1998] derived a model of precipitation 
comprised of two components; a Markov chain to capture the frequency and a mixed 
exponential distribution to represent the magnitude of the rainfall process. 
 
Cao el al [2004] extend this by deriving and comparing three proposed models: a gamma 
distribution, a mixed exponential distribution and a kernal density approach.  
 
Kubo and Kobaysahi [2002] argue that for the pricing of daily rainfall options it is sufficient 
to use a model based on a frequency assumption for that particular day of the year rather 
than considering the autocorrelation inherent in rainfall patterns, as in Moreno [2002]. 
 
4.3.1   Linear Trends 
 
Due to the long-term trends that were found in temperature data it would be reasonable 
to expect that there might be some long-term, discernable trends in the rainfall patterns. 
A regression was performed of the yearly cumulative rainfall at Sydney Airport since 1940 
to determine if any statistically significant trend could be established. Figure 4.2 displays 
the results. A slope of 0.055 with a standard error of 1.952 rejected any assumption of a 
linear trend in yearly cumulative rainfall at Sydney Airport. 
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Figure 4.3: Annual Cumulative rainfall – Sydney Airport. 
 
This means that the clear linear trends uncovered in the temperature data in section 3 do 
not transfer into a noticeable trend in rainfall patterns. Even when a linear regression was 
undertaken on the entire Observatory Hill data set (148 complete years) there were still 
no clear evidence of any linear pattern. The slope parameter was estimated at 0.2565 
with a standard error of 0.655. 
 
4.3.2   Frequency Process 
 
The frequency of the rain process is simply the Boolean answer to the question: “Did any 
precipitation enter the measuring devise during the 24hr period?” Hence the amount of 
rain has no effect of the frequency process that we propose as will be seen in section 
4.3.3. Later, however, we will allow the magnitude process to depend on the outcome of 
the frequency process described here. 
 
4.3.2.1 Seasonal 
 
Daily frequency resides in a 20%-50% band that has a mild seasonal dependence. 
Frequency tends to be higher in the summer months than in the winter months but noise 
appears to be the dominant process. Figure 4.3 shows the yearly distribution of daily 
rainfall frequency with a fitted degree 4 polynomial that will be used for subsequent 
projections. 
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Figure 4.4: Seasonal Rainfall Frequency – Syd. Airport 
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4.3.2.2 Persistence 
 
It is evident from every day weather observation that the chance of it raining on a 
particular day is strongly related to wether it rained on the previous day. This leads us to 
attempt to model the length of a rain period rather than just the frequency of rain. 
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 Figure 4.5: Rain/no Rain Persistence Distribution-Sydney 
Airport 

 
We could use the above distribution of rain and no-rain periods to complete simulations 
over a particular period in the future. However as Moreno identifies and as can be seen in 
figure 4.3, the frequency of rain is not constant throughout the year and hence it would be 
unreasonable to assume that the lengths of rain/no-rain periods are constant either. This 
means that we would be required to produce separate models for all of the individual 
periods where there are significantly different frequencies. 
 

 
4.3.2.3 Modelling 
 
We propose a Markov chain for the modelling of the frequency of rain as outlined in Cao 
et al [2004]. Moreno’s approach is to model via a Bernoulli distribution that was 
dependant on its history. Hence the probabilities were of the form: 
 

],......,,|1[ 21 nttttt XXXXPP −−−==                                      (4.1) 
 

The author then proceeded to determine the value of k in the above equation that 
produced the most reliable results and found that k = 1 gave the smallest relative error. 
So the process depends only on its last value and hence is equivalent to a Markov chain. 
Seasonality that is present in the frequency, as evident from figure 4.3, can be introduced 
through the variation of transition probabilities throughout the year. We propose fitting a 
degree 4 polynomial to each of the distribution depicted in figure 4.6. 
 
The difference now is that we need to estimate the frequencies conditional on wether or 
not it rained on the previous day, an extension of the analysis carried out in section 
4.2.2.1.The following graph shows the seasonal distribution for the two conditions along 
with their respective fitted distributions.  
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 Figure 4.6: Seasonal Rainfall Frequency – Syd. Airport 
 
This Markov model of the frequency process can then be used (after determining the 
parameter values) to predict the occurrence of rain on a daily basis over any time period 
out into the future. The table that follows shows the transition probabilities obtained for 
the Sydney Airport weather station: 

Rain No rain

Rain 0.55 0.45

No rain 0.28 0.72

Table 4.1 Transition 
probabilities – Syd. Airport 

 
4.3.3   Magnitude Process 
 
The second part of the modelling process involves predicting the magnitude of the rainfall 
conditional on the fact that it rains on that day. We represent this size process by . 
Here we adopt a combination of procedures utilised by several authors where we 
segment the size distributions depending on the occurrence of rainfall on both the 
preceding day as well as the following day. This is facilitated by the fact that the 
frequency process is first used to predict the occurrence of rain over the entire contract 
period allowing the magnitude of the process to depend on the future frequency state. 

tY

 
The following table shows the basic statistics of the four segments  

Rain t-1 No Yes
Average 3.74 7.20
StdDev 6.21 12.23

Max 79.0 182.1
Min 0.1 0.2

Average 6.43 13.89
StdDev 11.22 21.46

Max 132.6 216.2
Min 0.2 0.2

No

Yes

Rain t+1

Table 4.2: Basic statistics of the four 
segments – each is be fitted with its own 
gamma distribution – (units: ˚C) 
 

36 



 
                                                  Weather Derivative Pricing and Risk Management Applications 

 
 
Gaussian distributions were fitted to the segments via maximum likelihood estimation of 
the two parameters (α and β) that make up the distribution given by the form: 
 

)(
.)(

1

αβ α

βα

Γ
=

−
−

x

exxf                                                       (4.2) 

 
The chart below shows the differences in the parameters of the four gamma functions 
fitted to the segmented distributions. Table 4.2 and figure 4.7 show the different statistical 
properties of the four segments and underscores the importance of this classification. 
Possibly, the N/R/R and the R/R/N segments could be combined if one wished to simplify 
the model as their parameters are relatively close 
 

Gamma distribution parameter values

NRN RRN NRR RRR

alpha 0.58 0.45 0.47 0.49

beta 19.32 12.09 13.07 6.39
 

Table 4.3: Parameter values of gamma 
distribution -  estimated by least squares. 

 
These four distributions are shown graphically in the following picture: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4.7: Gamma Distributions – Sydney Airport 
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Figure 4.8 below shows a detailed section of the actual vs expected chart for the no rain / 
rain / no rain segment. It is evident from the graph that the model fit is satisfactory, even 
well into the tail of the distribution. Similar results were obtained for the three other 
segments that represent the range of possible situations for the magnitude process. 
These four gamma distributions now become the basis for the magnitude process that is 
simulated in the following section. 
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 Figure 4.8: Model Fit - Gamma Distribution – No rain / rain / no rain 
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4.3.4   Simulation 
 
Once parameters have been estimated for both the frequency process, and the 
magnitude process,  we are free to simulate sample precipitation values and compare 
them with historical results. 

tX

tY
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Figure 4.9: Sample simulated seasonal frequency vs Historical – 76 years. 
 
 

 

Simulated over 76 years the following histograms show the distribution of the magnitude 
of rainy days as predicted by the model against the actual values recorded at Sydney 
Airport. model for the months of February, March and April.  
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Figure 4.10: Sample simulated rainfall (mm) – Sydney Airport – 
February - 76 years. 
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 Figure 4.11: Sample simulated rainfall (mm) – Sydney Airport – 
March - 76 years. 
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Figure 4.12: Sample simulated rainfall (mm) – Sydney Airport – 
April - 76 years. 
 

Visually, the fit appears to be acceptable although the simulated rainfall frequency 
appears to be a little thin at the higher magnitudes. Figures 4.10-4.12 display these 
results. 
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4.4 Pricing Example  
 
To illustrate these principles we will calculate the price of a series of options using a 
burning cost approach. This will be undertaken for the nearby weather stations, namely 
Sydney Airport and Observatory Hill, so that the extent of the geographic basis risk can 
be appreciated. 
 
The specifics of the options to be priced are: 
 
 

   Period:  February 
Measure: Cumulative Monthly Rainfall 

Exercise Levels:  150 / 170 / 190 / 210 mm 
      Tick::  $10,000 /mm 
Location:  Sydney Airport & Observatory Hill 

 
The burning cost analysis used similar data sets for both of the weather stations, i.e. 
1939 – 2005, even though data for the Observatory goes back significantly further than 
1939. 
 

Burning' Cost Summary

120 130 140 150 160 170 180 190 200 210 220 230 240

Sydney Airport $357,632 $328,750 $302,908 $277,908 $253,908 $233,987 $216,724 $202,250 $187,776 $173,303 $159,461 $146,303 $133,171

Observatory Hill $444,645 $406,566 $371,921 $342,447 $315,987 $293,987 $274,092 $254,658 $236,237 $219,263 $203,671 $189,197 $175,671

Exercise Level

Table 4.4: Option prices – Sydney Airport vs Observatory Hill – 1939-2005 
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Figure 4.13: Option prices – Sydney Airport vs Observatory Hill – 1939-2005 
 
 
This graph clearly shows that the cost of the Observatory Hill option is consistently 
greater that the similar option at Sydney Airport in what appears to be a fairly constant 
proportional difference. 
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4.5 Risk Management 
 
Application 1: Hydro-Power Generation. 
 
In 1999 the finance committee of Hydro-Quebec recommended the “adoption of a 
weather risk management approach using weather derivatives”9 so that they could better 
manage the volatility of their earnings. Management recognised that the variation in 
runoff was the most significant risk to the future earnings of Hydro-Quebec as over 90% 
of their energy supply was sourced from hydropower.  
 
To manage this risk the company entered into a derivative contract with Enron that 
consisted of a combination of a put and a call option, often referred to as ‘long straddle’ 
when the strategy is used in equity or interest rate markets. As can be seen in the 
following chart, the final payoff depended on 2 dimensions: the Rainfall and the Gas price 
as show in the following distribution: 

                            Figure 4.14:  Pay-off structure - Hydro-Quebec Rainfall protection. 
 
Whilst this is a more complicated option structure than investigated in the previous 
sections it serves to illustrate how these derivative contracts are structured in practice. 
 
 
Application 2: Crop Protection 
 
Traditional crop insurance has proven difficult to implement in a sustainable way and 
insurance companies covering these risks generally have very few options to transfer 
these risks onto reinsurers or other financial institutions. Some of the obstacles to a 
sustainable insurance solution include: 
 

• High Administrative costs – heavily underwritten; 
• Asymmetric Information – requires significant research and expertise; 
• Moral Hazard – i.e. during economic downturns. 
• Loss assessments need to be undertaken for each individual farm. 

 
                                                 
9 Hydro-Quebec’s 1999 Annual Report 
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Weather derivative contracts overcome many of these difficulties by providing a 
transparent measure that can be used to obtain reliable prices that are available to the 
entire marketplace. 
 
Developing Countries Risk Transfer: 
 
Recently there have been many efforts made to attempt to use weather derivatives, or 
more precisely, indexed weather insurance to overcome many of the agricultural 
pressures that inflict developing countries. The World Band Commodity Risk 
Management group are currently investigating these areas and have developed the 
BASIX indexed insurance system which aims to provide a more effective way of insuring 
the income of some of the worlds poorest people. During 2003 and 2004 the pilot of the 
project entered 6 villages in the western region of the African country. 
 
Essential index based insurance contracts are called such because their payout is not 
defined by a contract (as in a traditional insurance policy) but rather is linked to the value 
of a particular index. This means that the moral risk is nearly completely removed as the 
underlying index is calculated in a transparent and efficient manner. On top of this the 
BASIX system incorporates high-level insurance against extreme weather shocks which 
are reinsured on to the international market.  
 
More recently, on the 6th of March this year, a derivative transaction was finalised that is 
being credited as the first humanitarian based derivative transaction. A leading insurance 
broker played a large part in negotiating a derivative contract between the United Nations 
World Food Program and a large French reinsurer, AXA Re. The contract called for the 
payment of $7.1 million in the event of an extreme drought, which was defined by strict 
measurement of well-established indexes. 
 
 
Application 3: Event Insurance 
 
This is a very recent development in the sphere of precipitation-based derivatives. Whilst 
event insurance has been available for some time now there has generally not been 
offered rainfall payouts or if they had the insurer (or indeed reinsurer) was generally 
unable to properly price these risks or transfer them to the broader financial markets. 
 
Take as an example the operators of the Sydney Cricket Ground who offer a refund to 
patrons of a one-day cricket match where there are less than a certain number of overs 
bowled during the game. To hedge against the exposure to rain they could purchase a 
call options over a daily rainfall index so that, in general, the contract pays out on those 
days that refunds are given to the spectators. The challenge here would be to design the 
contract so that it matches their exposure as closely as possible, i.e. to minimise the 
basis risk between the derivative contract and the economic exposure they face. As a 
further example consider the operators of the Sydney Royal Easter Show that is held 
every year over a 2 week period during Autumn. Ticket sales for the show during the 
period are heavily reliant on the prevailing weather conditions and the operators could 
seek protection to both adverse temperature and rainfall outcomes that would see a 
reduction in the revenue received from the event. 
 
Most event organisers would concede that weather conditions are the most unpredictable 
aspect in their attempt to bring together a large event and nearly all events would be in 
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some way financially exposed to extremes in most (if not all) of the weather variables. As 
such, this field offers great potential as an avenue of expansion for these derivative 
contracts. 
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5:  Where to from here? 
 
 
5.1 Research 
 
The level of academic literature is still sparse and much work needs to be done in order 
to enable the market to expand. It is essential for the growth of any new market that a 
transparent and reliable approach to pricing is put in place so that the participants can 
feel secure in their transactions. Thus, for the weather derivatives market to expand, a 
unified approach to pricing needs to be established for use by the growing number of 
practitioners in the marketplace.  
 
The current approaches to pricing are highly data intensive and the models adopted are 
generally kept in-house by those organisations that spend significant resources in 
developing them. Affordable, standardised data warehouses are required so that there 
are no information barriers between the market participants. Europe faces the biggest 
challenges in term of achieving a central data collection methodology due to the vast 
range of constituent countries that make up the EU. There currently exists no rules 
governing the operation of weather stations throughout the EU and an individual station 
can change is method of recording or even shut down altogether without any formal 
notification. Despite many of these difficulties progress is being achieved, such as the 
formation of WeatherXchange, a joint venture between the UK Met office and a large 
broker to provide up-to-date historical information well as forecasting services. 
 
During 2002 Euronext, a large European electronic exchange, released a series of 
temperature-based indices covering a variety of regions in France. Whilst raw historical 
data is not available the transparency with which these indices are calculated should 
provide a solid foundation for those seeking to transact temperature derivatives. In a 
recent development the Swedish Meteorological and Hydrological Institute and Energy-
Koch Trading have teamed up to launch a Nordic Precipitation Index. This index is based 
on 17 stations, 9 in Norway, and 8 in Sweden. This index provides a reference so that 
companies with large precipitation exposures in this region can purchase protection  
 
5.2 New Markets 
 
The weather derivatives market in Australia is practically non-existent. Being a continent 
that relies so heavily on primary industries, Australia has much to gain out of a greater 
understanding of its financial exposure to the weather and ways in which these risks can 
be effectively managed. Most derivative products provide their purchasers with price 
protection (eg. cattle or wool futures) but weather derivatives are nearly unique in being 
able to provide protection from adverse quantity, even if the price paid or received is 
unchanged.  
 
Whilst its uses in the agricultural sphere are potentially enormous it is first necessary to 
overcome the lingering issue of the sizeable basis risk that exists, particularly for rainfall-
based contracts. These difficulties will be overcome through a combination of clever 
product design as well as improved knowledge of the dynamics of temperature and 
rainfall statistics. There is also an obvious lack of counterparties to many of the contracts 
that would be popular in Australia apart from the usual risk bearers and speculators such 
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as insurers and large banks. Whilst in an urban environment it might be possible to find 
two natural counterparties for most of the rural weather risk it would be generally one-way 
with risk speculators required to take the other side. 
 
 
5.3 New Interest 
 
The potential for expansion of the weather derivative market globally is truly massive. 
More and more industries are realising the extent to which their returns are governed by 
variations in the weather and as has been highlighted throughout this paper there have 
been pioneers in many fields who have dived into this new risk management tools. 
Weather derivatives are unique in as far as derivative contracts are concerned as they 
combine aspects of both the financial and scientific worlds and the scientific accuracy of 
weather forecasters is proving significant in the approaches to pricing weather derivatives 
going forward. 
 
Interest via weather-based index insurance is shaping up to be one of the major growth 
areas in the next 10 years from both an economic as well as humanitarian perspective. 
Overall, the convergence of the properties of insurance and derivative products is 
enabling a wider range of risks to be offered for coverage by risk ‘takers’ as well as 
facilitating a more efficient vehicle to transfer these risks to global financial markets. 
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Appendix A: Missing Values 
 
The treatment of missing values is one of the most crucial steps in the data ‘cleansing’ 
process and as such a brief discussion of the typical approaches is warranted. It is 
common in any large time series that there will be missing values that can arise for a 
wide range of reasons. In respect of the data obtained from the Australian Bureau of 
Meteorology there are minimal gaps the majority of which appear during the periods of 
the great wars.  
 
 
Temperature 
 
The methods for filling missing data in temperature based time series are far more 
developed then for other variables in the main part due to the homogeneity in its 
geographical distribution. In other words, this uniformity means that information from 
near-by weather stations can be used to estimate values based on a historical 
relationship between the two stations. 
 
Some of the common methods that are used as a basis for filling missing values include: 
• Fallback methodology 
• Naïve approach 
• Expectation Maximization (EM) algorithm 
• Data Augmentation (DA) algorithm 
• Neural Networks Regression (NNR) models  
• Principal Component Analysis (PCA). 

 
The first two of these are well established and are generally used as benchmarks for the 
measuring of the other four. Dunis and Karalis [2003] undertook a comparison of the 
various methods for filling missing data from Philadelphia International weather station 
(‘Fallback’ of – Allentown, Bethlehem.) and concluded that the PCA method offered the 
most reliable results when tested in terms of a number of performance measures 
including: 
• Mean squared error 
• Root mean squared error 
• Theil’s Inequality Coefficient 
• Mean absolute percentage error 
• Mean error 

 
Based on the results of Dunis and Karalis [2003] the PCA method is selected to fill 
missing temperature values contained in the BOM data. 
 
 
Rainfall 
 
The approach to filling missing data points in the precipitation data is different to that 
used for temperature data and at the present time there exists very little research on 
appropriate methods for correcting rainfall based time series data. Due to the discrete 
nature of rainfall, the measurements at near-by stations are much more loosely linked 
than with temperature readings and as such can not be as effective in relating to the 
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missing values of the primary weather station. Here we use a more naïve approach than 
that used for temperature time series data. 
 
As before we will rely on near-by weather stations to supplement the missing values 
except here we look to find 2 such backup weather stations to remove some of the impact 
of the discreetness of rainfall. If the backup stations have the required entries then the 
average of the two stations is recorded for the primary weather station. 
 
For example, the following sample: 
 

Date Primary 
Station 

Backup 1 Backup 2 

1/02/2005 0 0 0 
2/02/2005  0 0 
3/02/2005  0 5.5 
4/02/2005 0 0 0 
5/02/2005  10.5 15.3 
6/02/2005 1.5 5 2.3 

 
after the application of the above procedure becomes: 
 

Date Primary 
Station 

1/02/2005 0 
2/02/2005 0 
3/02/2005 2.75 
4/02/2005 0 
5/02/2005 12.9 
6/02/2005 1.5 
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Appendix B: Temperature Distributions 
 
 

Figure B1: Histogram of daily average temperatures from 
Stockholm. (source: Benth et al [2005]) - (°C) 

 

Figure B2: Histogram of daily average temperatures from 

mperatures from 
l of Statistics Education 

Chicago. (source: Cambell and Diebold  [2002])  - (°F) 

Figure B3: Histogram of daily average te
St Loius. (1845-1978). (source: Journa
Volume 9, Number 1)  - (deg C) 
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